

Analytical and Characterisation Excellence in nanomaterial risk assessment: A tiered approach

Andy Chetwynd University of Birmingham

This project has received funding from the European Union Horizon 2020 Programme (H2020) under grant agreement no. 720952

Analytical and Characterisation Excellence in nanomaterial risk assessment: A tiered approach

Project highlights

- Analytical innovation in non-existent or poorly developed techniques
- Optimisation in existing techniques/instrumentation
- Benchmarking/standardisation in well developed techniques
- Training: Three layer model: core cohort of experts from the consortium, community training events, and online training tools
- Data solutions: to guide users (specially SMEs) through selection of the most appropriate methods to address their needs in risk assessment

Outline

- Particle characterisation
 - spICP-MS
 - scICP-MS

- Polymer characterisation
 - TGA-FTIR-GC-MS

Bio-nano interaction analysis
– CE-MS/MS

Single Cell ICP-MS

- Sc/spICP-MS is a form of ICP-MS with a rapid acquisition rate
- Individual events at the detector treated as a NP or cell
- scICP-MS uses a novel nebuliser to maintain the integrity of the cell until it reaches the plasma

Work flow for single cell ICP-MS

Intrinsic metal analysis of A549 lung ACEnano epithelial cells.

	A549 Cel	l Sample	A549 Cell Sample 26/06/19			
	21/1	1/18				
Element	Cell Concentration (cells per cm³)	Mean Mean Mass (ag)	Cell Concentration (cells per cm ³)	Mean Mass (ag)		
Zn 65.926	49,404	345	82,683	724		
Cu 64.9278	57,973	331	N/A	N/A		
Mn 54.9381	42,298	119	85,318	241		
Co 58.9332	42,295	79	99,917	118		
Average	47,993		89,306			
Standard Deviation	7,450		9,283	160		
Haemocytometer Count	42,917		92,500	140 - 120 - 20 -		

TGA-FTIR-GC-MS

Example GC-MS chromatograms and spectra

GC-MS of glitter: Tell-tale peaks vinyl benzoate, ethyl benzoate, benzoic acid and 1,1-biphenyl confirm that the glitter is PET, care must be taken as not all peaks are indicative of the polymer for example the styrene (benzene and toluene too)peak seen here is seen in many plastics and does not mean polystyrene is present

ACE Application to unknown mesoplastics

- Meso-plastic waste collected from Lowestoft beach
 - TGA was unable to definitively ID all of the plastics
 - FTIR ID'd everything apart from one non-plastic which as identified HDPE
 - GC-MS definitively identified all polymers using unique peaks
- Gas phase FTIR eliminates effect of black or fluorescent polymers

Sample ID	TGA	FTIR	GC-MS	Polymer
Beach plastic 1	No	Yes	Yes	Polystyrene
Beach plastic 2	No	Yes	Yes	Polyethylene
Beach plastic 3	Yes	Yes	Yes	Polypropylene
Beach plastic 4	No	Yes	Yes	Polystyrene
	Yes	Yes	Yes	Polypropylene
Beach plastic 6	Yes	Yes	Yes	Polyethylene
Beach plastic 7	Yes	Yes	Yes	Polyvinylchloride
Beach plastic 8	Yes	Yes	Yes	Polyethylene
Beach plastic 9	Yes	Yes	Yes	Polyethylene
Beach plastic 10	Yes	Yes	Yes	Polyethylene
Beach plastic 11	No	Incorrectly says HDPE	No	Not plastic
Beach plastic 12	Yes	Yes	Yes	Polyethylene
Beach plastic 13	No	Yes	Yes	Polyethylene

Yes and no refer to if the individual instruments in the hyphenated system can identify to polymer

Introduction to CE

- Basis of separation is the differential migration of molecules in an applied electric field
- <u>Electrophoresis</u>, *not* chromatography
 - Orthogonal/complementary to LC
- Exceptional Resolving Power
 - ✓ Peak efficiencies > 1,000,000 theoretical plates
- Small nano liter injection volumes
- Separation flexibility
 - ✓ capillary environment
 - \checkmark buffer selection and compatibility
- Automated, quantitative technique
- Capillary Electrophoresis is the movement of charged or polar molecules inside a capillary, filled with conductive fluid under the influence of an uniform electric field

ACEnano

Analytical and Characterisation Excellence

Application to protein corona

AC	Enan	0
	Analytical and Characterisation Ex	cellence

	PS-Carb		PS		ТІ		TI-PVP		TI-Dispex		Silica	
Protein	%	stdev	%	stdev	%	stdev	%	stdev	%	stdev	%	stdev
Fibrinogens	13%	0.2%	6 %	1.2%	43%	1.1%	41%	0.8%	9%	0.6%	17%	2.9%
Apolipoproteins	5%	1.1%	3%	0.5%	0%	0.0%	1%	0.1%	0%	0.0%	17%	5.7%
Complement components	7 %	1.5%	1%	0.6%	8%	0.7%	6 %	0.3%	8%	0.3%	12%	1.9%
Immunoglobulin	1%	0.2%	2%	0.6%	22%	2.5%	20%	2.8%	7 %	1.3%	12%	0.2%
Serum albumin	15%	0.6%	61%	1.7%	1%	0.0%	0%	0.0%	1%	0.1%	8%	1.4%
Vitronectin	32%	1.2%	10%	0.4%	5%	0.4%	8%	1.2%	14%	0.4%	2%	0.3%
Clusterin	1%	0.2%	10%	0.5%	0%	0.0%	0%	0.0%	0%	0.0%	1%	0.0%
Inter-alpha-trypsin inhibitor	3%	0.3%	1%	0.1%	1%	0.5%	1%	0.0%	0%	0.1%	4%	0.5%
Kininogen-1	3%	0.0%	0%	0.0%	1%	0.1%	3%	0.6%	2%	0.4%	3%	0.3%
Histidine-rich glycoprotein	7 %	2.5%	0%	0.0%	1%	0.2%	1%	0.1%	0%	0.0%	1%	0.1%
Alpha-2-HS-glycoprotein	0%	0.1%	0%	0.1%	2%	0.6%	4%	0.7%	22%	2.0%	1%	0.3%
Prothrombin	0%	0.2%	0%	0.0%	5%	0.4%	7 %	0.6%	21%	0.3%	0%	0.0%
Serotransferrin	0%	0.0%	0%	0.1%	0%	0.0%	0%	0.0%	0%	0.0%	4%	1.7%
Plasminogen	0%	0.1%	0%	0.1%	2%	0.0%	2%	0.2%	1%	0.1%	2%	0.5%
Gelsolin O	0%	0.2%	0%	0.0%	1%	0.3%	2%	0.1%	1%	0.0%	1%	0.2%
Beta-2-glycoprotein 1	1%	0.3%	0%	0.1%	1%	0.0%	0%	0.0%	0%	0.1%	1%	0.0%
Vitamin D-binding protein	0%	0.1%	2%	1.6%	0%	0.0%	0%	0.0%	0%	0.0%	0%	0.0%
Vitamin K-dependent protein S	0%	0.0%	0%	0.0%	1%	0.1%	1%	0.1%	1%	0.1%	0%	0.0%
Plasma kallikrein	1%	0.1%	0%	0.0%	1%	0.1%	1%	0.1%	1%	0.2%	0%	0.0%
Hemopexin	0%	0.0%	0%	0.0%	0%	0.0%	0%	0.0%	0%	0.0%	2%	0.2%
others	9%	0.3%	3%	0.5%	6%	1.0%	5%	0.0%	9%	0.5%	14%	1.3%

Colour code: 0% 5% 10% 30% 60%

Faserl et al, Nanomaterials, 2019

Acknowledgments

- University of Birmingham
 - Professor Eva Valsami-Jones
 - Professor Iseult Lynch
 - Dr Holly Nel
 - Benjamin Fryer
- Perkin Elmer
 - Aaron Davis
 - David Price
- AB Sciex
 - Dr Jim Thorn
- Innsbruck Medical University
 - Professor Herbert Lindner
 - Dr Klaus Farsel
- Leiden University
 - Dr Rawi Ramutaur
 - Wei Zhang

